1,8,15,22,30,34-HEXAOXA-29,35-DIOXO[8.8.7](1,4,2)CYCLOPHA-3,5,17,19-TETRAYNE
AND 1,8,15,22,30,34-HEXAOXA-29,35-DIOXO[8.8.7](1,4,2)CYCLOPHANE,
MODELS FOR CONFORMATIONALLY-DEFINED HOSTS

Alan B. Brown, Kenneth J. Haller, and Howard W. Whitlock, Jr.*

McElvain Laboratories of Organic Chemistry, Department of Chemistry

University of Wisconsin, Madison, Wisconsin 53706

Abstract. The title molecules exhibit minimum barriers of 24-26 kcal mol⁻¹ to ring inversion; an X-ray crystal structure of the saturated phane shows the aromatic rings to lie in contact and stacked.

We are interested in stereochemically-defined host molecules. The title molecules ($\underline{1}$ and $\underline{2}$, Scheme 1) test the effect of tethering together the arenes of the parent [8.8]paracyclophanes. Previous work in this laboratory has shown that ΔG^{\dagger} for passage of fused arenes or simple alkoxycarbonyl groups through the cavities of these systems is 12-13 kcal/mol. We now report that the short diester bridges of $\underline{1}$ and $\underline{2}$ impose inversion barriers above ca. 25 kcal/mol. An X-ray crystal structure of saturated $\underline{2}$ reveals that the arenes lie in contact and stacked, the first three atoms of three of the four alkoxy fragments are essentially coplanar with the attached arenes.

Scheme 1 outlines the preparation of $\underline{1}$ and $\underline{2}$. Reaction of 1,3-dibromopropane with acid $\underline{3}^6$ (Et₇N, DMF, 60°, 24 h) $\overline{7}$ gave diester $\underline{4}^8$ in 69% yield, oxidative cyclization of $\underline{4}$

Scheme 1. Preparation of 1 and 2.

[Cu(OAc) $_2\cdot H_2O$, pyridine, 44°, 2 h] 9 provided dihydroxymetacyclophane $\underline{5}$ (57%). 8 Propargylation of $\underline{3}$ (HC=CCH $_2$ Br, K $_2$ CO $_3$, DMF, room temp., 20 h) 10 furnished metacyclophane diether $\underline{6}$ (93%). 8 Oxidative cyclization of $\underline{6}$ [Cu(OAc) $_2\cdot H_2O$, pyridine, 42°, 10 min] 9 afforded the difficultly soluble $\underline{1}^8$ in 40% yield (18% isolated yield after extensive chromatography). Reduction of $\underline{1}$ [H $_2$

(1 atm), 5% Rh/Al $_2$ O $_3$, EtOAc, room temp] gave $\underline{2}$ (81%). Mass spectra of $\underline{1}$ contained no molecular ion, but the M⁺ peak of $\underline{2}$ [m/e· 512.2412, calc. (C $_{29}$ H $_{36}$ O $_8$) 512.2400] showed $\underline{1}$ and $\underline{2}$ to be cyclic monomers.

Table 1 shows the cyclization shifts $(\Delta \delta = \delta_{\text{phane}} - \delta_{\text{model}})^2$ of <u>1</u> and <u>2</u>, ¹¹ upfield shifts are negative. ² Stiff <u>1</u> shows cyclization shifts near zero, while flexible <u>2</u> shows

Phane	Model	Solvent	∆6 _{H-3}	$^{\Delta\delta}_{ ext{H-4}}$	^8H-6	нз СО2СН3
1	72	DMSO-d ₆	+0.114	-0.100	-0.036	H4 H6
2	<u>8</u> 6	CDC1 ₃	-0.27	-0.30	-0.34	7 R = CH2CECH 8 R = CH2CH2CH3

Table 1. Cyclization shifts of 1 and 2, in ppm, model compounds appear at the right.

substantial upfield shifts, the cyclization shifts of $\underline{1}$ and $\underline{2}$ closely resemble those of earlier similarly-bridged phanes. Thus, the arenes of $\underline{1}$ are held apart, while $\underline{2}$ lies collapsed. 2

The ${\rm CO_2CH_2}$ AB patterns (from irradiation of ${\rm CO_2CH_2CH_2}$) of $\underline{1}$ and $\underline{2}$ do not broaden significantly on heating, minimum inversion barriers were set by bandshape analysis. For $\underline{1}$ at 167° C in DMSO-d₆, t \geq 0.14 s, k \leq 7.1 s⁻¹, $\Delta G^{\dagger}_{440} \geq$ 24 kcal/mol; for $\underline{2}$ at 181° C in bromobenzene-d₅, t \geq 0.24 s, k \leq 2.4 s⁻¹, $\Delta G^{\dagger}_{454} \geq$ 26 kcal/mol. Here t is the average lifetime, k the unimolecular rate constant, and ΔG^{\dagger}_{T} the free energy of activation at T° K; the dynamic NMR studies were performed at 200 MHz.

These barriers are much higher than those imposed by fused arenes 3 or monodentate alkoxycarbonyl groups. 3,4 Dreiding models suggest that ring inversion of $\underline{1}$ demands somewhat synchronous rotation of the two arenes; this condition may produce the higher barrier of $\underline{1}$, but seems unlikely to enforce that of 2.

Crystal data of 2. $C_{29}H_{36}O_8$; monoclinic; space group P_{21}/c , a = 14.899(3), b = 10.144(3), c = 17.037(3) Å; β =100.20(2)°, Z = 4, $d_{calc.}$ = 1.34 g/cm³. The structure was solved by direct methods, ¹² and refined [based on the 4595 reflections with $F_0^2 > 3\sigma(F_0)^2$ and sine $\theta/\lambda \le 0.649 \text{ Å}^{-1}$] anisotropically for C and O atoms and isotropically for hydrogens to a final R_1 value of 4.2%. Figure 1 shows the structure.

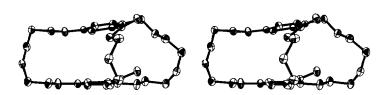


Figure 1. Stereoview of $\frac{2}{2}$, viewed parallel to the lower [C(23)-C(28)] arene, hydrogens omitted for clarity. ¹⁸

The arenes lie 3.5-4.5 Å apart, roughly the contact distance. The dihedral angles of the two longer bridges appear in Table 2. The O(15)-O(22) bridge has an approximate local C_2 axis and a torsional-angle sequence of $\frac{\text{aag}^{+}\text{g}^{+}\text{ag}^{+}\text{g}^{+}\text{aa}}{\text{canes}^{14}}$, similar fragments are found in cyclotetradecanes and 14-crown-4. Local C_2 symmetry for the O(1)-O(8) bridge would drive C(7) into a carbonyl oxygen, O(36); instead, C(7) twists toward the opposite arene.

C(27)-C(26)-O(1)-C(2)	16.3°	C(11)-C(12)-C(15)-C(16)	15.0°
C(26)-O(1)-C(2)-C(3)	178.5°	C(12)-0(15)-C(16)-C(17)	169.3°
O(1)-C(2)-C(3)-C(4)	56.0°	O(15)-C(16)-C(17)-C(18)	65.5°
C(2)-C(3)-C(4)-C(5)	83.8°	C(16)-C(17)-C(18)-C(19)	69.9°
C(3)-C(4)-C(5)-C(6)	109.9°	C(17)-C(18)-C(19)-C(20)	148.5°
C(4)-C(5)-C(6)-C(7)	62.4°	C(18)-C(19)-C(20)-C(21)	65.6°
C(5)-C(6)-C(7)-O(8)	173.8°	C(19)-C(20)-C(21)-O(22)	59.4°
C(6)-C(7)-O(8)-C(9)	134.9°	C(20)-C(21)-O(22)-C(23)	174.8°
C(7)-O(8)-C(9)-C(10)	62.3°	C(21)-O(22)-C(23)-C(28)	5.0°

Table 2. Dihedral angles of the O(15)-O(22) and O(1)-O(8) bridges of 2.

Thus, collapse of <u>2</u> requires considerable kinking of the hexamethylene spacer. ¹⁶ The crystal conformation of <u>2</u>, which is consistent with the solution cyclization shifts, may be dictated by any or all of <u>1</u>) arene stacking, <u>2</u>) alicyclic conformational preferences, ¹⁴⁻¹⁶ 3) conjugation of the carbonyl and arene pi systems, and <u>4</u>) similar conjugation of the ArOCH₂ lone pairs. ¹⁷ The close similarity of the cyclization shifts of <u>2</u> to those of related "monocyclic" phanes ²⁻⁴ suggests that those phanes adopt similar conformations.

Acknowledgement: This work was supported in part by the Samuel M. McElvain Memorial Fund, The National Institutes of Health, and the National Science Foundation.

References

- 1. Cf. a) Cornforth, J. Proc. R. Soc. London, Ser. B. 1978, 203, 101-117.
 - b) Cram, D. J.; Lein, G. M.; Kaneda, T.; Helgeson, R. C.; Knobler, C. B.; Maverick, E., Trueblood, K. N. J. Am. Chem. Soc. 1981, 103, 6228-6232.
- 2. Jarvi, E. T.; Whitlock, H. W., Jr. J. Am. Chem. Soc. 1980, 102, 657-662.
- 3. Adams, S. P.; Whitlock, H. W. J. Am. Chem. Soc., 1982, 104, 1602-1611.
- 4. Whitlock, B. J., Whitlock, H. W., Jr., to be published.
- 5. Related phanes: a) Cram, D. J.; Abell, J. J. Am. Chem. Soc. 1955, 77, 1179-1186.
 - b) Kanishi, M.; Kunizaki, J., Inanaga, J.; Yamaguchi, M. <u>Bull. Chem. Soc. Jpn.</u> 1981, 54, 3828-3831.
- 6. Jarvi, E. T. Ph.D. Thesis, University of Wisconsin-Madison, 1980.
- 7. Merker, R. L.; Scott, M. J. <u>J. Org. Chem.</u> 1961, 26, 5180-5182.
- 8. All new compounds have been characterized by ¹H NMR, ¹³C NMR, and infrared spectroscopy, and gave satisfactory microanalyses, all but 1 also gave satisfactory high- and low-

resolution mass spectra.

- 9. Eglinton, G., Galbraith, A. R. J. Chem. Soc. 1959, 889-896.
- 10. White, D. A. Synth. Commun. 1977, 7, 559-568.
- 11. a) $\underline{1}$ (DMSO-d₆): 7.300 ppm (d, J = 9.0 Hz, 2H, H-3), 7.220 (d, J = 3.0, 2H, H-6), 7.093 (dd, J = 9.0, 3.0 Hz, 2H, H-4), 5.03 (\underline{AB} , J = 18 Hz, 2H, 2-ArOCH₂), 5.03 (\underline{AB} , J = 18 Hz, 2H, 2-ArOCH₂), 4.98 (\underline{AB} , J = 17.2 Hz, 2H, 5-ArOCH₂), 4.95 (\underline{AB} , J = 17.2 Hz, 2H, 5-ArOCH₂), 4.537 [$\underline{A}_2\underline{B}_2XY$, J = (-)11.2, 7.0, 4.45 Hz, 2H, endo-CO₂CH₂], 4.281 [$\underline{A}_2\underline{B}_2XY$, J = (-)11.2, 7.3, 4.2 Hz, 2H, exo-CO₂CH₂], 2.193 [$\underline{A}_2\underline{B}_2XY$ = (-) 15.4, 7.3, 4.45 Hz, 1H, endo-CO₂CH₂CH₂], 2,106 [$\underline{A}_2\underline{B}_2XY$, J = (-)15.4, 7.0, 4.2 Hz, 1H, exo-CO₂CH₂CH₂].
 - b) $\underline{2}$ (CDC1₃) · 7.080 (d, J = 3.0 Hz, 2H, H-6), 6.717 (dd, J = 8.8, 3.2 Hz, 2H, H-4), 6.615 (d, J = 9.0 Hz, 2H, H-3), 4.574 [\underline{A}_2B_2XY , J = (-)11.2, 8, 3 Hz, 2H, CO₂CH₂], 4.528 [\underline{A}_2B_2XY , J = (-)11.2, 7, 2 Hz, 2H, CO₂CH₂), 3.92-3.81 (m, 8H, ArOCH₂), 2.214 (\underline{A}_3B_2XY , 2H, CO₂CH₂CH₂), 2.2-1.4 (m, 16H, chains).
- 12. Germain, G., Main, P.; Woolfson, M. M. Acta Crystallogr., Sect. A 1971, 27, 368-376.
- 13. Coordinates and bond lengths are deposited with the Cambridge Crystallographic Data Centre.
- 14. Dale, J. Top. Stereochem. 1976, 9, 199-270.
- 15. Dale, J. Isr. J. Chem. 1980, 20, 3-11.
- 16. Cf: Jarvi, E. T., Whitlock, H. W., submitted for publication.
- 17. Cf. Newkome, G. R.; Garbis, S. J., Majestic, V. K.; Fronczek, F. R., Chiari, G. <u>J.</u> Org. Chem. 1981, 46, 833-839.
- 18. Figure 2 shows the systematic numbering of $\underline{2}$. In the stereoview above (Fig. 1), the O(1)-O(8) bridge is at the right, the O(15)-O(22) bridge at the left, and the C(9)-C(14) arene at the top.

Figure 2. Systematic numbering of 2.